Mod

Nannan Lv5

Mod

一、long long 乘法取模

核心思想

用long double 估计商的取值,然后任它溢出,它的真实答案和它%次方答案是一样的
$xym = xy-\dfrac{x*y}{m}*m$

代码

1
2
3
4
5
6
7
8
9
ll mul(ll x,ll y,ll m)
{
x%=m;y%=m;
ll d = ((long double)x*y/m);
d = x*y-d*m;
if(d>=m)d-=m;
if(d<0)d+=m;
return d;
}

二、分数取模(没有逆元的情况)

例题:求

很容易发现的等比求和,

因为不一定互质,因此可能不存在逆元
所以我们必须转化
$S = \dfrac{qq^{n-1}}{q-1}(q-1)S = qq^{n-1} mod (p*(q-1))$

现在用快速幂就能解决啦,最后再除以就是答案了

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
#include<bits/stdc++.h>
using namespace std;
typedef __int128 ll;
ll q,n,p;
ll ksm(ll a,ll b,ll p)
{
ll ans = 1,base = a;
while(b)
{
if(b&1)
{
ans = ans*base%p;
}
base = base*base%p;
b>>=1;
}
return ans%p;
}


int main()
{
int t;
cin>>t;
while(t--)
{
long long x,y,z;
cin>>x>>y>>z;
q = x,n = y,p = z;
p = p*(q-1);
ll s = (ksm(q,n+1,p)-q)%p;
s/=(q-1);
cout<<(long long)s<<endl;
}
return 0;
}

三、组合数取模(基本)

例题:回答T组询问,输出的值。

$C_{n}^{m} = \dfrac{n!}{m!(n-m)!}\dfrac{a}{b} \bmod pa \bmod p(b \bmod p)^{-1}$

  1. $n!(m!)^{-1}(n-m)^{-1}$

  2. %%

    代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#include<bits/stdc++.h>
using namespace std;
const int N = 1e7+10;
const int mod = 1e9+7;
typedef long long ll;
ll fac[N],fnv[N];

ll ksm(ll a,ll b)
{
ll ans = 1,base = a;
while(b>0)
{
if(b&1)
{
ans *= base;
ans %= mod;
}
base *= base;
base%=mod;
b>>=1;
}
return ans;
}

ll binom(int n,int m)
{
if(m<0||m>n)return 0;
return fac[n]*fnv[m]%mod*fnv[n-m]%mod;
}

int main()
{
fac[0] = 1;
for(int i = 1;i<=N;i++)
fac[i] = fac[i-1]*i%mod;
fnv[N] = ksm(fac[N],mod-2);
for(int i = N;i>=1;i--)
fnv[i-1] = fnv[i]*i%mod;
assert(fnv[0]==1);
int t;
cin>>t;
while(t--)
{
int a,b;
cin>>a>>b;
cout<<binom(a,b)<<endl;
}
return 0;
}

四、取模的封装

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
typedef long long ll;
struct modular_arithmetic {
const int mod = 998244353;
int add(ll a, ll b) {
return (a % mod + b % mod) % mod;
}
int mul(ll a, ll b) {
return ((a % mod) * (b % mod)) % mod;
}
int pow(ll x, ll n) {
if (n == 0) return 1;
int res = pow(x, n / 2);
res = mul(res, res);
if (n % 2) res = mul(x, res);
return res;
}
int inv(ll x) {
return pow(x, mod - 2);
}
int div(ll a, ll b) {
return mul(a, inv(b));
}
};
modular_arithmetic mod;
  • Title: Mod
  • Author: Nannan
  • Created at : 2023-06-15 11:07:00
  • Updated at : 2024-09-30 19:26:02
  • Link: https://redefine.ohevan.com/2023/06/15/五、Mod/
  • License: This work is licensed under CC BY-NC-SA 4.0.
Comments